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Abstract. The morphological and biochemical properties of plant canopies are strong
predictors of photosynthetic capacity and nutrient cycling. Remote sensing research at the leaf
and canopy scales has demonstrated the ability to characterize the biochemical status of
vegetation canopies using reflectance spectroscopy, including at the leaf level and canopy level
from air- and spaceborne imaging spectrometers. We developed a set of accurate and precise
spectroscopic calibrations for the determination of leaf chemistry (contents of nitrogen,
carbon, and fiber constituents), morphology (leaf mass per area, Marea), and isotopic
composition (d15N) of temperate and boreal tree species using spectra of dried and ground leaf
material. The data set consisted of leaves from both broadleaf and needle-leaf conifer species
and displayed a wide range in values, determined with standard analytical approaches: 0.7–
4.4% for nitrogen (Nmass), 42–54% for carbon (Cmass), 17–58% for fiber (acid-digestible fiber,
ADF), 7–44% for lignin (acid-digestible lignin, ADL), 3–31% for cellulose, 17–265 g/m2 for
Marea, and !9.4% to 0.8% for d15N. The calibrations were developed using a partial least-
squares regression (PLSR) modeling approach combined with a novel uncertainty analysis.
Our PLSR models yielded model calibration (independent validation shown in parentheses)
R2 and the root mean square error (RMSE) values, respectively, of 0.98 (0.97) and 0.10%
(0.13%) for Nmass, R

2¼ 0.77 (0.73) and RMSE¼ 0.88% (0.95%) for Cmass, R
2¼0.89 (0.84) and

RMSE¼2.8% (3.4%) for ADF, R2¼0.77 (0.69) and RMSE¼2.4% (3.9%) for ADL, R2¼0.77
(0.72) and RMSE¼1.4% (1.9%) for leaf cellulose, R2¼0.62 (0.60) and RMSE¼0.91% (1.5%)
for d15N, and R2 ¼ 0.88 (0.87) with RMSE ¼ 17.2 g/m2 (22.8 g/m2) for Marea. This study
demonstrates the potential for rapid and accurate estimation of key foliar traits of forest
canopies that are important for ecological research and modeling activities, with a single
calibration equation valid over a wide range of northern temperate and boreal species and leaf
physiognomies. The results provide the basis to characterize important variability between and
within species, and across ecological gradients using a rapid, cost-effective, easily replicated
method.
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INTRODUCTION

The nutritional and morphological properties of
leaves within plant canopies are strong predictors of
photosynthetic capacity and biogeochemical cycling in
ecosystems (Aber and Melillo 1982, Green et al. 2003,
Wright et al. 2004, Shipley et al. 2005, Santiago 2007,
Cornwell et al. 2008). Variations in foliar morphology,
quantified as the leaf dry mass per leaf area (Marea; g/
m2) or the reciprocal (specific leaf area, SLA), corre-
spond to the fundamental tradeoff in leaf construction
costs vs. light-intercepting surface area and are driven by
a range of environmental controls (Niinemets 2007,
Poorter et al. 2009). Foliar nitrogen, on a mass (Nmass;

%) or area (Narea; g/m
2) basis, is strongly related to the

photosynthetic capacity of leaves, because it is a
fundamental component of light-harvesting pigments
and photosynthetic machinery, including the enzyme
RuBisCo (Field and Mooney 1986, Evans 1989). In
particular, nitrogen represents a primary limiting
nutrient in temperate and boreal tree species (LeBauer
and Treseder 2008).

Other chemical compounds such as lignin and
cellulose are invested in leaf structural components
and, along with leaf carbon concentration (Cmass; %),
determine the recalcitrant characteristics of canopy
foliage (Aber and Melillo 1982, Santiago 2007, Fortunel
et al. 2009), thereby influencing the nutrient cycling
potential of ecosystems. There has also been an
increasing interest in the use of stable isotopes as a
source of important information on the relationships
between plants and their environment (e.g., Hobbie and
Hobbie 2006, Compton et al. 2007, Bowling et al. 2008,
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Helliker and Richter 2008, Craine et al. 2009). In the
case of nitrogen, d15N provides an integrated assessment
of the nitrogen cycling properties of a stand (Robinson
2001, Compton et al. 2007) and especially the associated
microbial communities that preferentially assimilate
different isotopes at different rates (Hobbie and Hobbie
2006, Craine et al. 2009). Thus, the ability to character-
ize variation in key leaf functional traits among species
and across ecosystems is central to improving our
understanding of nutrient cycling and carbon assimila-
tion by plants.
In the last few decades, remote sensing has played an

increasingly important role in the study of plant
chemistry (e.g., Curran 1989, Asner and Martin 2009,
Kokaly et al. 2009, Ustin et al. 2009). Reflectance
spectroscopy of fresh leaves or dried and ground leaf
material has shown the potential to link leaf optical
properties with a range of foliar traits, including
pigments, water content, nitrogen, dry matter, cellulose,
and lignin (e.g., Card et al. 1988, McLellan et al.
1991a, b, Bolster et al. 1996, Richardson and Reeves
2005, Petisco et al. 2006). These studies led to the
development of a number of leaf-level radiative transfer
models, including PROSPECT (Jacquemoud and Baret
1990, Feret et al. 2008), Liberty (Dawson et al. 1998),
and LEAFMOD (Ganapol et al. 1998), which provide a
mechanistic understanding of the coordination between
leaf properties and spectral reflectance. At the canopy
scale, early research into the use of imaging spectrom-
eters (Peterson et al. 1988, Wessman et al. 1988b,
Matson et al. 1994) illustrated the potential for
quantifying select canopy chemical properties, including
nitrogen and lignin, but with some sensor and statistical
limitations (Grossman et al. 1996). Later studies
determined that a range of foliar traits could be remotely
sensed through the use of improved imaging spectrom-
eters (Curran et al. 1997, Martin and Aber 1997, Smith
et al. 2003, Townsend et al. 2003), providing a means to
study ecosystem functioning in a spatial context
(Ollinger et al. 2002, Smith et al. 2002, Ollinger and
Smith 2005, McNeil et al. 2008, Deel et al. 2012, Dahlin
et al. 2013). Recently, it has been demonstrated that
spectroscopy can simultaneously provide estimates of a
range of foliar nutrients and morphology at the leaf and
canopy scales within diverse tropical ecosystems (e.g.,
Asner and Martin 2008, Asner et al. 2011a, Doughty et
al. 2011).
Refinement of generalized algorithms measuring

foliar traits from reflectance spectroscopy of dried and
ground leaf material can not only aid further develop-
ment of generalized algorithms capable of using imaging
spectrometer data to make canopy-level trait measure-
ments, but it can also catalyze spatially extensive
ecological research by providing a rapid and inexpensive
means for measuring trait variation across multiple
canopy heights, diverse species, and distinct geographic
settings. In this study, we examine the ability to make
generalized estimates of a suite of key leaf biochemical,

nutritional, and morphological properties, namely leaf
Cmass, Nmass, the relative abundance of stable nitrogen
isotopes (d15N),Marea (LMA), lignin, cellulose, and fiber
(lignin and cellulose), using leaf-level reflectance spec-
troscopy of dried and ground (i.e., homogenized) leaf
material. Our primary goal is to demonstrate a
generalized approach for estimating each leaf property,
along with its variation, among species and functional
groups, as it relates to within-canopy radiation levels.
Specifically, we (1) evaluate the capacity to accurately
estimate seven leaf traits using reflectance spectroscopy
at the leaf level; (2) identify regions of the spectrum
important to retrieval of these traits; and (3) test the
extent to which we can generalize the predictions of leaf
traits across species and geographic locations.

MATERIALS AND METHODS

Study sites

We sampled a broad range of canopy dominant tree
species in natural forests of the north central and
northeastern United States (Fig. 1a, Table 1) during the
2008–2011 growing seasons (i.e., June–September). The
data set comprises the most common tree species found
within the forests of this region (Appendix A), and the
sample locations span a large range in climatic
conditions (Fig. 1, Table 1). The forests in this region
are of high environmental, societal, and economic
importance (White et al. 2005) and have been the focus
of many important ecological and global change
research projects over the last few decades (e.g., Curtis
1959, Pastor et al. 1984, Frelich and Reich 1995,
Mitchell et al. 1996, Fassnacht and Gower 1999, Schulte
et al. 2005, Wolter et al. 2008, Burton et al. 2011,
Couture et al. 2011). The study region includes the
Chequamegon Ecosystem Atmosphere Study (ChEAS),
the goal of which is to characterize the environmental
controls and disturbance impacts on forest carbon and
water fluxes within northern temperate forests (e.g.,
Burrows et al. 2003, Ahl et al. 2004, Cook et al. 2008,
Desai et al. 2008, Ewers et al. 2008). In addition, the
Blackhawk Island, Wisconsin, USA study site is the
location of several pioneering studies illustrating the
potential for imaging spectroscopy to successfully map
ecosystem properties related to carbon and nutrient
cycling (e.g., Wessman et al. 1988b, Martin and Aber
1997). Finally, two of our sites contained old-growth
hemlock (Tsuga canadensis), both hardwood forests
comprising the few remnant forests in the region that did
not experience major logging during the last century
(Frelich and Lorimer 1991).

Field methods

Samples were collected from 165 plots across the
study region. At each plot, individual canopies were
sampled using a shotgun or line launcher (Cascade
Rescue, Sandpoint, Idaho, USA) outfitted with a rope
saw to retrieve sunlit foliage from the upper canopy (top
one-third) and mid-canopy partially shaded leaves
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(middle one-third). Bottom canopy (bottom one-third),
fully shaded leaves were sampled with a pole pruner or
hand shears. In contrast to studies focused exclusively
on remote sensing (e.g., Asner et al. 2011a), we collected
both sunlit and shaded foliage to examine the generality
of the methods across broad species and functional
groups, but also the ability of the methods to capture the
strong modifications in leaf traits that occur with
variation in light intensity within a canopy (Niinemets
2007, Poorter et al. 2009, Ollinger 2011).
The samples were immediately sealed in large poly-

ethelyne bags containing moist paper towels to maintain
moisture (Foley et al. 2006) and placed into coolers for

transport within 1–3 hours to a field laboratory for
further processing. Immediately, the foliar fresh mass (g)
and leaf area (cm2) for samples intended for chemical
analysis and/or spectral collection were determined
using a precision balance and cork-borers for broadleaf
species or a flatbed scanner for needleleaf samples. The
fresh leaf area for needleleaf species was then determined
using the scanned images of the weighed needles and
analyzed with the open-source ImageJ software (Abràm-
off et al. 2004) using particle recognition routines
described by Richardson et al. (2001). In addition, we
separated needleleaf species into age classes. For pines,
we separated needles into new (current year foliage) and

TABLE 1. Summary of field data collection sites located in the upper Midwest and northeastern United States.

Site No. plots Elevation range (m) MAP (mm) MAT (8C)

Michigan

Ottawa National Forest 5 460–541 805 4.3
Porcupine Mountains 5 272–391 867 4.8

Minnesota

Finland State Forest/North Shore 9 384–591 785 3.4
Superior National Forest 5 437–459 722 3.2

New York

Adirondack Park 42 365–770 1191 5.1

Wisconsin

Baraboo Hills 12 318–423 887 7.9
Bayfield 4 295–367 830 4.6
Blackhawk Island 10 262–264 854 7.6
Chequamegon National Forest 19 470–520 811 4.6
Flambeau State Forest 4 425–435 817 5.2
Kettle Moraine 5 312–380 848 7.6
Madison 31 260–300 903 8.0
Pine Barrens 14 275–381 802 5.2

Notes: Range in elevation derived from the GTOPO30 data set. Mean annual precipitation (MAP) and mean annual
temperature (MAT) data are from PRISM (Daly et al. 1994).

FIG. 1. The location of the field study sites (Table 1) presented in (a) geographic and (b) climate space. Gray area in panel (b)
indicates the range of climatic space in the eastern United States. Our field sites cover a considerable portion of the range in climatic
conditions in temperate and sub-boreal regions of the conterminous United States, as indicated by the climatic envelope in panel (b).
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old (previous years foliage), while for spruce, fir, and
hemlock trees, we maintained three separate classes of
new, previous year, and older foliage. In the lab, the
same leaf discs and needle samples, separated by age and
position within the canopy, were oven dried at 708C for
72 h to obtain oven-dry mass (g). These data, combined
with the area measurements, were then used to calculate
the specific leaf area (SLA; m2/kg) and leaf mass per
area (1/SLA, Marea; g/m

2).

Tissue chemistry

Oven-dried samples were ground and homogenized
using a blade grinder and stored in a desiccator. Samples
were again oven dried the night before sample prepara-
tion and allowed to cool for 1 h prior to preparation to
ensure proper measurement of material dry mass. We
determined foliar nitrogen concentration (Nmass; %) via
Dumas combustion using the Vario Macro CHN
(Elementar, Hanau, Germany). Results are reported
on a dry-mass ash-included basis.
Leaf 15N:14N ratio was determined on a subset of

samples via isotope ratio mass spectrometry (IRMS) at
the UC Davis Stable Isotope Facility (SIF; Davis,
California, USA). Results were expressed in standard d
notation where foliar 15N:14N ratios are reported
relative to the atmospheric N2 ratio as d15N (%) ¼
(Rsample/Ratmo ! 1) 3 1000, where Ratmo ¼ 0.0036765.
The d15N of atmospheric N2 is by definition 0.0%. The
concentrations of leaf fiber (acid detergent fiber,
determined as cellulose þ lignin) and lignin were
determined gravimetrically using sequential extraction
in a hot acid-detergent solution in an Ankom 200 Fiber
Analyzer (Ankom Technology, Macedon, New York,
USA) and incubation in 72% H2SO4. Cellulose was
calculated as the difference between fiber and lignin.
While this method may not be precise for isolating fiber/
lignin (Brinkmann et al. 2002), it was deemed sufficient
for examining relative variation in recalcitrance proper-
ties among species and sites.

Spectroscopy of the dried and ground leaf material

We collected leaf reflectance spectra on dried, ground,
and homogenized leaf material using an ASD FieldSpec
3 full-range spectroradiometer (Analytical Spectral
Devices, Boulder, Colorado, USA) configured for fast
and consistent collection of spectra. We designed and
built a ‘‘probe press’’ apparatus; a Dremel Workstation
(Dremel, Racine, Wisconsin, USA) drill press modified
for use with an ASD plant-probe fore optic, a fitted
aluminum sample cup painted matte black with Krylon
Ultra-Flat Black (Krylon Industrial, Cleveland, Ohio,
USA), and an integrated Effetto Mariposa, Giustaforza
Professional precision torque wrench handle (Effetto
Mariposa, Bra, Italy), which was used to collect spectra
on the dried leaf material. The plant probe contains a
light source which is perpendicular to the contact
surface, and the end of a bare fiber-optic cable bundle

mounted at 428 to perpendicular; this configuration
minimizes specular reflectance.
Through trial-and-error, it was determined that 800

mg of leaf material provided the most consistent and
stable results between sample replicates (,0.1% varia-
tion, data not shown). The loosely packed dry leaf
material was weighed and poured into the sample cup,
leveled, then the probe was depressed into the sample
material with 2 N$m of torque. On a single sample, we
collected three spectra, loosened and mixed the sample
in the cup, and then collected another three spectra.
Between each of the six scans, we turned the sample cup
to minimize systematic bias that could arise from
orientation of the material and/or due to probe
characteristics. All spectral observations underwent
automated quality assurance/quality control, as well as
a splice correction to ensure continuous spectra across
detectors in the spectrometer before averaging in R,
using package FieldSpectra to produce a single spectrum
per sample (package available online).4

Leaf chemometric analysis

We utilized a partial least-squares regression (PLSR)
modeling approach (Wold 1984, 2001, Geladi and
Kowalski 1986, Serbin et al. 2012) using the PLS
package (Mevik and Wehrens 2007) in the R open-
source statistical environment (R Development Core
Team 2013) to predict the target leaf traits from ASD
spectra. PLSR is a standard statistical approach utilized
in chemometric analyses and is superior to stepwise
regression because it is designed to handle high predictor
collinearity and/or situations where the number of
predictor variables is equal to or higher than the number
of observations. These situations lead to erroneous
results with standard stepwise linear regression (Gross-
man et al. 1996). PLSR reduces the large predictor
matrix (i.e., spectral reflectance data) down to a
relatively few, noncorrelated latent components.
We split our data (Table 2 lists the number of

observations for each trait) for model calibration (80%)
and independent validation (20%), ensuring that both
sets spanned the range of measured values for each trait.
The calibration data were further split 70% to 30% via
1000 permutations to conduct uncertainty analysis (see
Materials and methods, evaluation of PLSR model
performance and uncertainty analysis), meaning that for
any one of the 1000 permutations, a random 56% of the
data were used for model development and 24% for
model assessment and uncertainty analysis, while an
unchanging 20% of the data were withheld entirely until
the end of the process to evaluate the final models. We
used a set percentage for validation for all traits to
ensure consistency in the application of our analyses,
with 20% specifically selected to ensure that trait with
the lowest number of samples (d15N, n ¼ 178) had

4 https://github.com/serbinsh/R-FieldSpectra

//TITAN/Production/e/ecap/live_jobs/ecap-24-07/ecap-24-07-08/layouts/ecap-24-07-08.3d ! Monday, 22 September 2014 ! 1:42 pm ! Allen Press, Inc. ! Page 1654 MS 13-2110

SHAWN P. SERBIN ET AL.1654 Ecological Applications
Vol. 24, No. 7



enough samples for calibration and uncertainty analysis.
To avoid the potential to over-fit the calibration models,
we optimized the number of PLSR components by
minimizing the prediction residual sum of squares
(PRESS) statistic (Chen et al. 2004). We calculated the
PRESS statistic of successive model components
through a cross-validation analysis. For the larger data
sets (Nmass, Cmass, and Marea) we used a 10-fold cross-
validation, while for the other variables (acid-digestible
fiber [ADF], acid-digestible lignin [ADL], cellulose,
d15N), we used leave-one-out cross-validation. Finally,
the optimal number of components for each model was
determined where the root mean square error (RMSE)
of the PRESS statistics achieved a minimum (Wold et al.
2001), and successive PLSR components did not
improve RMSE as assessed using a t test. Lastly, we
calculated the variable importance of projections metric
(VIP; Wold et al. 1994) on the final models to identify
the regions of the spectrum that were significant to the
prediction of the seven leaf traits.
We reviewed past studies (e.g., Curran 1989, Elvidge

1990, Fourty et al. 1996, Richardson and Reeves 2005,
Petisco et al. 2006, Kleinebecker et al. 2009, Asner et al.
2011a, b), to select regions of the spectrum as a basis for
predicting each foliar trait. For Marea, we incorporated
the visible (VIS, 500–700 nm), near-infrared (NIR, 700–
1300 nm), and shortwave-infrared (SWIR, 1300–2400

nm) spectrum, given the coordination of leaf structure
with pigment and water absorption features that co-vary
with Marea (Baret and Fourty 1997, Niinemets 2007).
For ADF, ADL, cellulose, and d15N, we used a portion
of the shortwave-infrared spectrum (SWIR, 1200–2400
nm) with well-documented lignocellulose and nitrogen
absorption characteristics (Curran 1989). The Nmass and
Cmass models used a slightly smaller range of wave-
lengths (1500–2400 nm) corresponding to the dominant
structural and nitrogen absorption features (Curran
1989, Elvidge 1990). The body of literature indicates that
the SWIR contains the salient spectral info for most
traits (Curran 1989, Elvidge 1990, Kokaly et al. 2009),
with the NIR being useful for Marea (Asner et al. 2011b)
and d15N (Wang et al. 2007). Moreover, we used
pseudo-absorption (A ¼ log[1/R]) for ADF, ADL,
cellulose, and d15N rather than reflectance (R) based
on results of previous studies (Table 4).

Evaluation of PLSR model performance and uncertainty
analysis

We quantified the performance of each PLSR model
using three main metrics: the coefficient of determina-
tion (R2), the root mean square error (RMSE), and the
model bias. We provide the RMSE value for each leaf
trait in the units of measure as well as a percentage of

TABLE 3. Results of the PLSR modeling and cross-validation for each leaf trait.

R2 RMSE %RMSE

Leaf property Spectrum range (nm) Treatment No. components Cal. Val. Cal. Val. Cal. Val.

Marea, (g/m
2) 500–2400 raw 11 0.91 0.87 17.2 22.8 7.4 10.1

Nmass (%) 1500–2400 raw 9 0.98 0.97 0.10 0.13 2.7 4.0
Cmass (%) 1200–2400 raw 12 0.77 0.73 0.88 0.95 9.2 11.1
d15N (%) 1200–2400 log(1/R) 14 0.62 0.60 0.91 1.51 10.2 16.2
ADF (%) 1200–2400 log(1/R) 13 0.84 0.85 2.8 3.4 7.3 9.3
ADL (%) 1200–2400 log(1/R) 13 0.77 0.69 2.4 3.9 9.2 12.7
Cellulose (%) 1200–2400 log(1/R) 10 0.77 0.72 1.4 1.9 7.5 11.4

Note: Root mean square error (RMSE) percentage shows the error of each model as a percentage of the observed data range in
the calibration (Cal.) and validation (Val.) data set, respectively. We used pseudo-absorption (A ¼ log[1/R]) for ADF, ADL,
cellulose, and d15N rather than reflectance (R) based on results of previous studies.

TABLE 2. Summary statistics for the measured leaf nutritional and morphological traits examined in this study.

Broadleaf Conifer

Leaf property No. samples Median Range Median Range Global range

Leaf mass per area, Marea (g/m
2) 759 50.8 17.4–117.8 164.9 35.2–270.0 14.5–1515.6

Nitrogen content, Nmass (%) 544 2.92 1.3–4.4 1.4 0.7–2.33 0.3–6.4
Carbon content, Cmass (%) 540 48.6 44.1–52.4 50.6 46.8–53.6 40.5–54.1
d15N (%) 178 !3.1 !6.6–0.8 !4.7 !9.4 to !0.5 !11.0–18.5
Fiber, ADF (%) 224 33.9 22.4–55.5 43.3 17.5–57.9 22.0–60.0
Lignin, ADL (%) 220 18.5 8.6–39.3 24.6 8.7–35.1 2.0–65.0
Cellulose (%) 205 15.7 9.7–27.8 17.9 8.8–27.7 5.0–44.0

Notes: This data was used in the calibration and validation data sets for the development of the partial least-squares regression
(PLSR) models. ADF and ADL refer to acid-digestible fiber and lignin, respectively. Global range data for Marea and Nmass are
derived fromWright et al. (2004) GLOPNET database, global range data for Cmass are derived from Kattge et al. (2011), global
range data for d15N come from Craine et al. (2009), and global range for fiber, lignin, and cellulose come from various sources, in
addition to this study (Bolster et al. 1996, Curran et al. 1997, Asner et al. 2011).
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TABLE 4. Comparison of PLSR model results among studies for the seven leaf functional traits.

Trait
R2

vegetation type N Spectra Spectral region (m) Spectral treatment Cal. Val.

Nmass (%)

Temperate/boreal 544 dry 1500–2400 raw 0.98 0.98
Temperate/boreal 372 dry 400–2498 1D[log(1/R)] 0.97 0.97, 0.93, 0.86
Temperate/boreal 372 dry 400–2498 2D[log(1/R)] 0.98 0.97, 0.93, 0.88
Temperate/boreal 372 dry 400–2498 2D[log(1/R)] 0.97 0.97, 0.93, 0.84
Aleppo pine 84 dry 1100–2500 2D[log(1/R)] 0.94
Holm oak 92 fresh 400–1100 log(1/R) 0.51
Holm oak 92 fresh 1100–2500 log(1/R) 0.70
Holm oak 92 fresh 400–2500 log(1/R) 0.56
Holm oak 92 fresh 1100–2500 2D[log(1/R)] 0.89
Holm oak 92 fresh 400–2500 2D[log(1/R)] 0.93
Montane conifer 132 dry 400–1098 2D[log(1/R)] 0.95 0.84

Montane conifer 132 dry 1100–2498 2D[log(1/R)] 0.96 0.92

Mediterranean 182 dry 1100–2500 log(1/R) 0.96 0.94
Mediterranean 182 dry 1100–2500 1D[log(1/R)] 0.99 0.92
Mediterranean 182 dry 1100–2500 2D[log(1/R)] 0.99 0.94
Tropical forests 162 fresh 400–2500 raw 0.85
Bog species 72 dry 1250–2350 log(1/R) 0.96 0.86
Bog species 72 dry 1250–2350 1D[log(1/R)] 0.99 0.93
Bog species 72 dry 1250–2350 2D[log(1/R)] 0.99 0.89
Humid tropical 6136 fresh 400–1050 raw 0.59
Humid tropical 6136 fresh 400–2500 raw 0.77
Tropical forests 159 fresh 400–2500 raw 0.83
Wheat 359 fresh 400–2500 1D 0.92
Wheat 253 dry 400–2500 1D 0.93

Cmass (%)

Temperate/boreal 540 dry 1200–2400 raw 0.77 0.73
Aleppo pine 84 dry 1100–2500 2D 0.99
Montane conifer 72 dry 400–1098 log(1/R) 0.37

Montane conifer 72 dry 1100–2498 2D[log(1/R)] 0.26

Bog species 72 dry 1250–2350 log(1/R) 0.92 0.93
Bog species 72 dry 1250–2350 1D[log(1/R)] 0.94 0.93
Bog species 72 dry 1250–2350 2D[log(1/R)] 0.96 0.94
Humid tropical 6136 fresh 400–1050 raw 0.43
Humid tropical 6136 fresh 400–2500 raw 0.71

Marea (g/m
2)

Temperate/ boreal 759 dry 500–2400 raw 0.91 0.87
Holm oak 373 fresh 400–1100 log(1/R) 0.88
Holm oak 373 fresh 1100–2500 log(1/R) 0.96
Holm oak 373 fresh 400–2500 log(1/R) 0.95
Holm oak 373 fresh 400–1100 2D[log(1/R)] 0.95
Holm oak 373 fresh 1100–2500 2D[log(1/R)] 0.97
Holm oak 373 fresh 400–2500 2D[log(1/R)] 0.98
Humid tropical 6136 fresh 400–1050 raw 0.82
Humid tropical 6136 fresh 400–2500 raw 0.77
Tropical forests 2871 fresh 400–2500 raw 0.85
Tropical forests 159 fresh 400–2500 raw 0.90
Wheat 179 fresh 400–2500 1D 0.90

ADF (%)

Temperate/Boreal 224 dry 1200–2400 log(1/R) 0.84 0.85
Montane conifer 132 dry 400–1098 2D[log(1/R)] 0.88 0.68

Montane conifer 132 dry 1100–2498 2D[log(1/R)] 0.96 0.89

Mediterranean 182 dry 1100–2500 log(1/R) 0.97 0.96
Mediterranean 182 dry 1100–2500 1D[log(1/R)] 0.98 0.96
Mediterranean 182 dry 1100–2500 2D[log(1/R)] 0.97 0.92

ADL (%)

Temperate/boreal 220 dry 1200–2400 log(1/R) 0.77 0.69
Temperate/boreal 372 dry 400–2498 1D[log(1/R)] 0.88 0.88, 0.78, 0.73
Temperate/boreal 372 dry 400–2498 2D[log(1/R)] 0.88 0.89, 0.75, 0.69
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the sample data range (i.e., %RMSE) following Feilha-
uer et al. (2010) and Asner et al. (2011a).

As noted, we utilized a 10003permutation test of each
PLSR model to characterize the model calibration
performance based on an iterative 70% to 30% split of
the calibration data drawn from across the data range
for each leaf trait. From this, we generated new
estimates for the iteratively removed samples based on
the retained samples and the previously determined
optimal number of PLSR components. This was done to
test stability and the generality of the models using
different sets of calibration data (Serbin et al. 2012), and
to estimate error distributions for each target leaf trait
based on the uncertainty in trait measurements, spectral
data, and statistical approach. We averaged model
coefficients across the 1000 permutations to generate a
mean PLSR model as well as means and distributions of
all of the PLSR diagnostics. This mean model is the final
model we report and use in application. The final step of
the analysis involved application of the 1000 models to
the 20% of the data that were originally split from the
full data set (and never used) to report model
performance on independent data (referred to as
‘‘independent validation’’ in our results).

Finally, we performed a series of post-hoc analyses on
our spectroscopic predictions across our 13 field sites, 46
species, 165 plots, and 1226 samples to ensure that
patterns of relationships among the spectroscopically
determined traits match ecologically expected trends.

RESULTS

Leaf properties

Laboratory analyses showed large variation in the
seven measured leaf traits across the 46 species and 13
study sites (Table 2). For Marea and Nmass, the
distribution of values was significantly different (t test,
P , 0.05) between the broadleaf and needleleaf tree
species, while the remaining leaf traits displayed a
similar range in values between the two leaf physiog-
nomic groups. On a mass basis, nitrogen concentration
(Nmass; %) varied more than sixfold across samples in
the calibration data set, while leaf carbon (Cmass; %)
exhibited the smallest trait variation (20.5%) among
samples, but the C:N ratio showed a much larger
distribution in values (10.5 to 68.6, data not shown),
given the marked variation in Nmass (Table 2). Marea

ranged from 17 to 270 g/m2 across samples and species,
falling somewhere in the middle of the global range
(Table 2). Foliar recalcitrance properties (ADF, ADL,
cellulose) were, on average, 9.4%, 6.2%, and 2.2%
higher, respectively, for needleleaf vs. broadleaf tree
leaves, while d15N displayed comparable variation
between groups.

Leaf PLSR analyses

The reflectance of the dried and ground leaf material
varied by 20–50% across the spectrum, and was
comparable for both needleleaf and broadleaf samples

TABLE 4. Extended.

Error measurement

Cal. Val. Source

0.10! 0.13! present study
0.11" 0.11, 0.14, 0.25§ Bolster et al. (1996)}
0.11" 0.11, 0.14, 0.26§ Bolster et al. (1996)}
0.11" 0.11, 0.14, 0.27§ Bolster et al. (1996)}
0.53" Gillon et al. (1999)#
1.8§ Ourcival et al. (1999)
1.3§ Ourcival et al. (1999)
1.9§ Ourcival et al. (1999)
1.0§ Ourcival et al. (1999)
1.0§ Ourcival et al. (1999)
0.06" 0.12! Richardson and Reeves

(2005)
0.05" 0.12! Richardson and Reeves

(2005)
1.18" 0.79§ Petisco et al. (2006)
0.79" 0.89§ Petisco et al. (2006)
0.93" 0.76§ Petisco et al. (2006)
0.32! Asner and Martin (2008)
0.09" 0.10§ Kleinebecker et al. (2009)
0.08" 0.08§ Kleinebecker et al. (2009)
0.14" 0.09§ Kleinebecker et al. (2009)
0.50! Asner et al. (2011a)
0.39! Asner et al. (2011a)
0.45! Doughty et al. (2011)
0.37" Ecarnot et al. (2013)
0.27" Ecarnot et al. (2013)

0.88! 0.95! this study
0.28" Gillon et al. (1999)#
0.89" Richardson and Reeves

(2005)
0.96" Richardson and Reeves

(2005)
0.97" 0.93§ Kleinebecker et al. (2009)
0.91" 0.87§ Kleinebecker et al. (2009)
0.81" 0.86§ Kleinebecker et al. (2009)
2.42! Asner et al. (2011a)
1.90! Asner et al. (2011a)

17.2! 22.8! this study
15.35§ Ourcival et al. (1999)
10.69§ Ourcival et al. (1999)
10.65§ Ourcival et al. (1999)
10.53§ Ourcival et al. (1999)
7.87§ Ourcival et al. (1999)
8.34§ Ourcival et al. (1999)
0.50 Asner et al. (2011a)
0.39 Asner et al. (2011a)
15.40 Asner et al. (2011b)
18.7! Doughty et al. (2011)
6.3" Ecarnot et al. (2013)

2.8! 3.4! this study
1.74" 3.72! Richardson and Reeves

(2005)
1.03" 2.23! Richardson and Reeves

(2005)
1.82" 1.42§ Petisco et al. (2006)
1.64" 1.47§ Petisco et al. (2006)
2.09" 1.90§ Petisco et al. (2006)

2.4! 3.9! this study
1.61" 1.60, 1.69, 5.16§ Bolster et al. (1996)}
1.62" 1.53, 1.74, 5.67§ Bolster et al. (1996)}
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(Fig. 2), although the variance of the broadleaf samples
was larger in the SWIR (Fig. 2b), while the variability in
the NIR region was higher for needleleaf species (Fig.
2c).
All seven leaf traits included in this study were

predicted with high accuracy and precision using the
PLSR approach on reflectance measurements of dried
and ground leaf material (Table 3, Fig. 3). The PLSR
model for leaf nitrogen concentration (Nmass) exhibited
the highest overall model calibration and validation
performance (Fig. 3a, calibration R2¼ 0.98, calibration
RMSE¼ 0.10%), followed by Marea (Fig. 3b, calibration
R2¼ 0.91, calibration RMSE¼ 17.2 g/m2) and leaf fiber
concentration (Fig. 3c, calibration R2¼ 0.84, calibration
RMSE¼2.8%). The models for Cmass (Fig. 3d), cellulose

(Fig. 3e), and ADL (Fig. 3f ) displayed moderate PLSR
model performance with the percentage of RMSE
between 7.2% and 12.7%, while d15N (Fig. 3g) showed
the lowest overall predictive accuracy (Table 3). For the
Cmass model, the small range in values (Table 2, Fig. 3d)
likely contributed to the lower performance of the
model; despite the lower R2, note the reasonable RSME
(11.1% of the trait range for validation data). Overall,
our results are in line with those reported previously
(Table 4).
We used the variable importance in projection (VIP)

metric to identify the regions of the spectrum that were
significant to the individual model calibrations (Fig. 4).
Overall, the VIP values displayed consistent patterns
across the spectrum, with notable variations correspond-

TABLE 4. Continued.

Trait
R2

vegetation type N Spectra Spectral region (m) Spectral treatment Cal. Val.

Temperate/boreal 372 dry 400–2498 2D[log(1/R)] 0.87 0.87, 0.74, 0.72
Montane conifer 132 dry 400–1098 2D[log(1/R)] 0.82 0.42

Montane conifer 132 dry 1100–2498 2D[Log(1/R)] 0.81 0.39

Mediterranean 182 dry 1100–2500 log(1/R) 0.95 0.93
Mediterranean 182 dry 1100–2500 1D[log(1/R)] 0.96 0.95
Mediterranean 182 dry 1100–2500 2D[log(1/R)] 0.97 0.89
Humid tropical 6136 fresh 400–1050 raw 0.32
Humid tropical 6136 fresh 400–2500 raw 0.62

Cellulose (%)

Temperate/boreal 205 dry 1200–2400 log(1/R) 0.77 0.72
Temperate/boreal 372 dry 400–2498 1D[log(1/R)] 0.89 0.86, 0.87, 0.69
Temperate/boreal 372 dry 400–2498 2D[log(1/R)] 0.89 0.86, 0.84, 0.69
Temperate/boreal 372 dry 400–2498 2D[log(1/R)] 0.89 0.86, 0.83, 0.64
Montane conifer 132 dry 400–1098 2D[Log(1/R)] 0.88 0.70

Montane conifer 132 dry 1100–2498 2D[log(1/R)] 0.97 0.94

Mediterranean 182 dry 1100–2500 log(1/R) 0.97 0.97
Mediterranean 182 dry 1100–2500 1D[log(1/R)] 0.98 0.97
Mediterranean 182 dry 1100–2500 2D[log(1/R)] 0.98 0.96
Humid tropical 6136 fresh 400–1050 raw 0.27
Humid tropical 6136 fresh 400–2500 raw 0.77

d15N (%)

Temperate/boreal 178 dry 1200–2400 log(1/R) 0.62 0.60
Open savanna fresh 619,695 raw 0.82
Open savanna fresh 603,704 1D[log(1/R)] 0.92
Bog species 72 dry 1250–2350 log(1/R) 0.97 0.95
Bog species 72 dry 1250–2350 1D[log(1/R)] 0.98 0.91
Bog species 72 dry 1250–2350 2D[log(1/R)] 0.99 0.96
Managed pasture 37 dry 2036–2180 NBDA 0.34

Notes: The number of samples shown represents the total number of observations used in the model calibration and validation
(when available). Except for d15N, which had a limited number of studies, we did not include any previous studies utilizing multiple
linear regression (MLR) models, given the issues reported by Grossman et al. (1996). Cells showing three values for the validation
R2 and the validation error measurement are drawn from studies using multiple data sets. Cells left blank indicate no data. NBDA
stands for normalized band-depth analysis (Kokaly and Clark 1999). D refers to the level of derivative (i.e. difference) spectra used;
1D is first-difference, and 2D is the second-difference spectra.

! Error measurement was RMSE.
" Error measurement was the standard error of cross validation (SECV).
§ Error measurement was the standard error of prediction (SEP).
} Only reporting statistics for foliage samples.
# Only reporting statistics for models developed using needles sampled from trees does not include falling needles or litter

samples.
jj Study utilized stepwise multiple linear regressions to develop calibration model.
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ing to the contribution of particular wavelengths for leaf
traits. For example, wavelengths in the SWIR region
from 1900 to 2400 nm were uniformly important for all
variables, but also varied in the position of peak
importance among variables (Fig. 4). Close agreement
between known spectral absorption features and signif-
icant wavelengths was observed for the seven leaf traits,
especially the 1450 nm, 1690 nm, 1900 nm, 2100 nm,
2200 nm, and 2300 nm absorption features. The raw
coefficients that can be applied to spectral reflectance
plus their uncertainties are reported in Supplement 1 for
all constituents.
The 10003 permutation analysis illustrates the uncer-

tainty inherent in our seven PLSR models and in
predictions made for each trait (Fig. 5, error bars). With
the randomly selected training and test data (from the
full calibration data set), we found that the spectral data
continued to adequately predict leaf traits, but, as
expected, with slightly lower accuracy and higher
uncertainty (Fig. 5). The d15N model displayed the
largest variability in results among the 1000 permuta-
tions and the Nmass model showed the smallest change in
model performance. Some of the differences among
models are related to variability in sample size and data
range (Table 2), but a comparison of the standardized

errors (%RMSE, Fig. 5b) indicates that, in general, the
model error was similar among traits, excluding the very
robust Nmass model. For d15N, these results suggest that
our models adequately capture the trend in isotopic
ratio, but with lower relative precision than the other
traits.

Ecological variation in leaf traits

We examined the ecological trends in spectroscopi-
cally predicted traits across our data set. Nmass, Marea,
ADL, and d15N for the 15 most common broadleaf and
needleleaf trees exhibited high variability within and
among species across our sites (Fig. 6). In many cases,

FIG. 2. The mean, 95% confidence interval, minimum, and
maximum dry spectral reflectance for (a) the 1217 broadleaf
and conifer samples collected across temperate and boreal
forests, (b) distribution of reflectance for the 692 broadleaf
samples, and (c) distribution of reflectance for the 525 needle-
leaf samples.

TABLE 4. Continued. Extended.

Error measurement

Cal. Val. Source

1.64" 1.65, 1.82, 5.29§ Bolster et al. (1996)}
1.08" 2.0! Richardson and Reeves

(2005)
1.12" 1.64! Richardson and Reeves

(2005)
1.25" 0.93§ Petisco et al. (2006)
1.19" 0.85§ Petisco et al. (2006)
1.45" 1.11§ Petisco et al. (2006)
8.16! Asner et al. (2011a)
6.18! Asner et al. (2011a)

1.4! 1.9! this study
2.10" 2.34, 1.76, 3.94§ Bolster et al. (1996)}
2.14" 2.35, 1.98, 3.08§ Bolster et al. (1996)}
2.15" 2.34, 2.04, 3.21§ Bolster et al. (1996)}
1.30" 2.69§ Richardson and Reeves

(2005)
0.62" 1.10§ Richardson and Reeves

(2005)
1.10" 0.88§ Petisco et al. (2006)
0.93" 0.86§ Petisco et al. (2006)
1.10" 0.98§ Petisco et al. (2006)
6.32! Asner et al. (2011a)
2.47! Asner et al. (2011a)

0.91! 1.51! this study
(none reported) Wang et al. (2007)||
(none reported) Wang et al. (2007)||

1.89" 1.60§ Kleinebecker et al. (2009)
1.84" 1.99§ Kleinebecker et al. (2009)
1.70" 1.42§ Kleinebecker et al. (2009)
1.78! Elmore and Craine (2011)
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the within-species variation was as high as the variation
across species, likely related to differences among layers
in the canopy and ecological variations in site condi-
tions. For Marea, canopy position (i.e., growing season
light levels) played a strong role in mediating the values
from the bottom to the top of the canopy, while Nmass

did not display a significant change in values with
canopy position (Fig. 7). However, nitrogen content
(Narea, g/m

2; the product of Marea and Nmass) increased
from the lower- to uppermost branches in the canopy,
related to the strong changes in Marea, but the increase
was greater for broadleaf trees (Fig. 7). For d15N, we

observed strong variation across sites related to broad
climatic patterns, which in turn influence species
composition and nutrient cycling (Fig. 8).

DISCUSSION

Our results for northern temperate and boreal forest
tree species demonstrate the ability of dry-material
spectra to characterize a wide range of foliar traits
between and among species and functional types, as well
as across the broad ecological gradients that drive
between- and within-species variation in those traits.
Moreover, we show that we can employ a single

FIG. 3. Independent validation results for the seven partial least-squares regression (PLSR) models; nitrogen content (Nmass),
carbon content (Cmass), isotopic composition (d15N), leaf mass per area (Marea), acid-digestible fiber content (ADF), and acid-
digestible lignin content (ADL). Error bars denote the 95% confidence intervals for each predicted value, while the dark lines denote
the 95% prediction intervals and gray lines show the 95% confidence interval of the models. The dashed lines show the 1:1 line, with
the regression line shown in light gray. Other abbreviations and variables are RMSE, root mean square error, and Nval. Nval refers
to the number of independent observations used for validation of each PLSR model.
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calibration model per trait for all species and differing
canopy positions among those species, suggesting a rapid
and cost-effective approach to the quantification of
geographic variation in foliar traits. Our results are
comparable to previous studies using PLSR approaches
(e.g., Bolster et al. 1996, Gillon et al. 1999, Brinkmann et
al. 2002, Richardson and Reeves 2005, Petisco et al. 2006,
Asner et al. 2011a; Table 4) and other methods (e.g.,
McLellan et al. 1991a, Martin and Aber 1994, Kokaly
and Clark 1999, Curran et al. 2001). We observed the best

model performance for the Nmass model, which is
consistent with previous research (e.g., Bolster et al.
1996, Petisco et al. 2006); however our model for Marea

was also strong (Table 3, Fig. 3b), with accuracy similar
to results derived from fresh-leaf spectroscopy (e.g.,
Ourcival et al. 1999, Asner et al. 2011a; Table 4). The
PLSR models for other leaf traits displayed slightly lower
performance (Table 3, Figs. 3 and 5), but are within the
range of results expected from the literature, several of
which used fresh-leaf spectra observations (Table 4).

FIG. 4. The PLSR model variable importance of prediction (VIP) plot by wavelength for the six chemical constituents
investigated in this study. The wavelength centers of key leaf chemical absorption features for leaf proteins, starches, cellulose, and
lignin (Curran 1989, Elvidge 1990, Fourty et al. 1996) are presented as the vertical gray lines for reference.

FIG. 5. Distribution of model performance for 10003 permutation tests used to calculate model uncertainty. The boxplots
display the median for each trait by group (dark vertical line), the interquartile range (boxes), and the data range (whiskers). Gray
dots indicate performance of the model on the independent validation data (Table 3).
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However, in contrast to many previous studies (Table 4),
we avoided the use of first or higher order difference
spectra. Permutations using derivative as opposed to raw
spectra showed that such transformations yield unstable
models because of the additional noise in the derivative
spectra and the resulting influence this noise has on the

PLSR regression coefficients (data not shown). Although
several of the leaf traits we tested have been examined
elsewhere, our study is unique in that we examined a large
number of species (46) and traits (seven) concurrently,
and analyzed leaves from different canopy levels (top
third, middle third, and bottom third), following a

FIG. 6. Trait variability determined from spectroscopy for eight common broadleaf (left column) and seven common needleleaf
(right column) species. Traits measured are (a, b) nitrogen concentration, (c, d) leaf mass per area, (e, f ) lignin concentration, and
(g, h) isotopic 15N ratio. Species measured are red maple (ACRU), sugar maple (ACSA), yellow birch (BEAL), white ash (FRAM),
trembling aspen (POTR), white oak (QUAL), northern red oak (QURU), American basswood (TIAM), balsam fir (ABBA), jack
pine (PIBA), black spruce (PIMA), red pine (PIRE), white pine (PIST), northern white cedar (THOC), and eastern hemlock
(TSCA). Boxplots display the median for each trait by group (dark horizontal line), the interquartile range (boxes), the data range
(whiskers), and the extreme observations (black dots).
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consistent analytical approach. Furthermore, we included
a comprehensive uncertainty analysis within our PLSR
modeling step. The coefficients reported in Supplement 1
can be applied to spectra recorded in a fashion consistent
with our methods to estimate these traits for temperate
and boreal taxa similar to those in our data set.
Our results reinforce the utility of spectroscopic

methods for quantitatively estimating a range of key
foliar properties, including Marea (LMA), Nmass, and
structural components (e.g., lignin, cellulose), across
diverse tree species (Figs. 3 and 4). Unlike the use of
narrow-band spectral vegetation indices (SVIs) for the
estimation of key leaf traits (e.g., Gitelson et al. 2006, Le
Maire et al. 2008), our PLSR approach characterizes the
simultaneous contribution of many important absorp-
tion properties of leaves (e.g., Curran 1989, Fourty et al.
1996, Foley et al. 1998; Fig. 4) to the overall relationship
with leaf reflectance, generally yielding more robust
models when compared to SVIs (Feret et al. 2011).
Specifically, the locations of important wavelengths in
our biochemical PLSR models match the locations of
known spectral absorption features related to proteins,
nitrogen, lignin, cellulose, and starches (Curran 1989,
Elvidge 1990, Fourty et al. 1996, Kokaly et al. 2009; Fig.
4). However, differences in important wavelengths
among traits (Fig. 4) and in the associated prediction
coefficients (Supplement 1) demonstrate that the rela-
tionships between spectral features and foliar traits vary
considerably, emphasizing that different components of
the spectrum are sensitive to different chemical constit-
uents or leaf traits.
The ability to accurately estimate leaf chemistry using

reflectance spectroscopy depends on instrument charac-
teristics (e.g., spectral resolution, signal-to-noise, which
has steadily improved in recent years), the magnitude of
the optical signal for the trait of interest, and the
availability of foliage samples spanning a sufficient
range of values (Curran 1989, Foley et al. 1998, Feret et
al. 2011). In addition, the measurement precision of the
analytical techniques to develop calibration data can
vary among the traits of interest. In particular, the
methods for determining ADF and lignin ADL concen-
tration can result in relatively high variance between
replicate samples (Brinkmann et al. 2002). This is due to
the gravimetric methods used to determine the values for
ADF and ADL; cellulose is determined as the difference
between the two. In our data set, we estimate from
sample replicates that measurement error for ADF and
ADL is between 1% and 12%, but generally less than
5%. Similarly, we found considerable replicate variance
for the d15N samples, ranging from 1% to 10%.
Likewise, the methods used for estimating needleleaf
Marea are also known to introduce error (Bond-
Lamberty et al. 2003), primarily due to the difficulty in
accurately measuring the projected area of needles. A
review of the literature suggests that a model for Marea

may be improved by the use of fresh-leaf spectroscopic
data (Table 4), given the strong coupling between water

content, leaf structure, and Marea (Fourty and Baret
1997, Asner et al. 2011a, b).

Our study differs significantly from previous re-
search in that we did not limit our collection of foliar
samples to the top, sunlit portion of the crown (e.g.,
Asner et al. 2011a), nor did we aggregate samples from
differing needle ages in evergreen conifer species (e.g.,
Petisco et al. 2006). The resulting PLSR models were
able to successfully integrate all the variation related
to species, canopy position, and physiognomic differ-
entiation (Table 2, Appendix A) into a single model

FIG. 7. Trait variation by canopy position (bottom one-
third, middle one-third, top one-third of canopy) determined
from spectroscopy for (a) leaf mass per area, (b) nitrogen
concentration, and (c) nitrogen content. Boxplots display the
median for each trait by group (dark horizontal line), the
interquartile range (boxes), the data range (whiskers), and the
extreme observations (black dots).
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for each trait (Table 3, Fig. 3). The results did not
show sensitivity of the models to species type, canopy
position, or leaf lifespan (Appendix B). This demon-
strates that we can use these models to rapidly assess
important within-canopy variations in leaf traits that
are ecologically significant to whole-plant nutrient
dynamics, light harvesting, and carbon sequestration.
The within-canopy variation is often ignored when
estimating canopy or stand level variables for ecosys-
tem process models, some of which can utilize this
information directly (e.g., Drewry et al. 2010), and
other analyses due to the logistics of sample collection
or analytical expense. The key finding is that spectra
reflect the variations in leaf properties within a
canopy, thereby enabling spectroscopy retrieval of
traits without having to stratify the analyses by canopy
position.

Spectroscopic determination of foliar isotopes

Several previous studies explored the potential to
estimate foliar isotopic concentrations of leaf nitrogen
(d15N) and carbon (d13C), reporting accuracy levels of
70–99% (Richardson and Reeves 2005, Wang et al.
2007, Kleinebecker et al. 2009). However, Elmore and
Craine (2011) did not observe a strong relationship
between spectral reflectance of dried and ground leaf
material and d15N (R2¼ 0.34). In addition, they did not
observe a strong relationship between leaf nitrogen and
d15N, which they hypothesized as one of the more likely
reasons for which previous studies observed an ability to
estimate d15N from leaf reflectance spectroscopy. We
observed only a moderate correlation between d15N and
leaf nitrogen percentage (Nmass, r ¼ 0.32), suggesting

covariance with Nmass may have only provided a minor
contribution to our ability to predict d15N. However,
given the prediction R2¼0.62 for d15N from spectra, it is
unlikely that the weak correlation between d15N and
Nmass alone explains our ability to estimate d15N, and
that spectroscopic sensitivity to d15N is a real feature
rather than an artifact of a d15N–Nmass correlation.
Much work is still required to develop full confidence in
the ability to estimate d15N from spectroscopy: our
model for d15N was not as strong as that reported by
Kleinebecker et al. (2009), which may result from sample
size (N ¼ 72 compared to our N ¼ 178) or scope of
species included. Nevertheless, the results of our study
and others (Richardson and Reeves 2005, Kleinebecker
et al. 2009) highlight the potential for the spectroscopic
determination of foliar isotopes, even if only broadly,
and represent an important prospect for ecological
studies.

Broad applications of contact spectroscopy for ecological
studies

Use of rapid spectroscopic methods to characterize
foliar traits imparts considerable savings in both time
and analytical expense, allowing for a larger number of
measurements to be made across broader geographic
regions. This increase in measurement capacity leads to
a greater ability to both characterize within- and
between-species variability and to test hypotheses about
spatial variability in foliar traits with respect to climatic
and other drivers (e.g., disturbance legacies; Deel et al.
2012). For instance, ecosystem models often assume
constant values of traits per species, when in fact these
traits can vary considerably within a species (Fig. 6).

FIG. 8. Patterns across broad climatic gradients of foliar isotopic concentration (d15N) determined from spectroscopy. (a)
Relationship of foliar d15N with mean annual temperature. (b) Relationship of foliar d15N with mean annual precipitation. The
black filled circles show the patterns of broadleaf tree species, while the gray filled circles display the patterns of needle-leaf tree
species. Climate data were derived from PRISM (Daly et al. 1994). Patterns closely match those derived from a global data set
(Craine et al. 2009).
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However, we can now utilize information on trait
variability to better simulate variation and uncertainty
in ecosystem responses to climate, global change, and
disturbances (LeBauer et al. 2013). Moreover, traits vary
within canopies, in particular in response to the light
environment (Niinemets 2007). Most notably, Marea is
higher in the sunlit portion of a canopy, and declines
with lower canopy position (Fig. 7). Although nitrogen
concentration by mass (Nmass) does not vary consider-
ably within a canopy (Fig. 7), nitrogen content by area
(Narea), a key determinant of photosynthetic capacity
(Kattge et al. 2009), is highly variable as a consequence
of the variability in Marea within canopies (Fig. 7). In
terms of characterizing the recalcitrance properties of
foliage (e.g., ADL, cellulose, d15N), our spectroscopic
methods yielded estimates that match expected ecolog-
ical patterns across species types (Fig. 6e–h), describing
the potential turnover rates and nitrogen cycling
potential (Melillo et al. 1982) across a much larger
sample than is logistically feasible with standard
approaches. For example, isotopic analysis can be
prohibitive but, despite our reported limitations, pat-
terns of d15N derived from spectra with respect to
climate follow the results of Craine et al. (2009) quite
well. The ability to utilize rapid and inexpensive
spectroscopic methods to quantify the patterns of foliar
traits allows for meaningful data to be feasibly generated
across a wide variety of species, canopy heights, and
study locations. Also, further refinement of laboratory
spectroscopic techniques provides increased support for
refining algorithms useful for predicting these traits from
canopy-level imaging spectrometer data (e.g., AVIRIS;
Green et al. 1998).

Generalized algorithms of leaf functional traits

Building on our results, future work should concen-
trate on linking similar data and observations from
around the world (e.g., Bolster et al. 1996, Asner et al.
2011a, Doughty et al. 2011) to develop globally
generalized models (e.g., Martin et al. 2008, Feret et
al. 2011). Numerous studies have illustrated the
potential for remotely sensing foliar biochemistry at a
variety of scales and with fresh or dry leaf spectra (e.g.,
Wessman et al. 1988a, b, Bolster et al. 1996, Martin and
Aber 1997, Richardson and Reeves 2005, Petisco et al.
2006, Asner et al. 2011a), yet a general set of models
covering the larger suite of leaf traits worldwide does
not exist. For intensive projects such as the U.S.
National Ecological Observatory Network (NEON;
Kampe et al. 2010) and the Carnegie Spectranomics
project (Asner and Martin 2009), which have large
remote sensing and leaf-based spectroscopy compo-
nents, it is becoming increasingly important to stan-
dardize methods and provide operational algorithms
that can be applied both at the leaf level and from
remote sensing platforms.
Future spaceborne imaging spectrometers such as the

proposed Hyperspectral Infrared Imager (HyspIRI)

will allow for the repeat, global mapping of key
ecosystem parameters, such as Nmass and Marea.
Further work will help identify the extent to which
leaf-level spectral features scale to the pixel. Our study
and others, such as Feret et al. (2011) and Asner et al.
(2011a), provide a foundation for such efforts and
should help to distinguish the candidate traits for
generalized multiscale models (e.g., Nmass, Marea,
lignin) from those that may not scale efficiently (e.g.,
d15N). In particular, the development of standardized
approaches to retrieve foliar traits from leaf-level
spectra across many species provides the basis to
identify and compare spectral features in canopy-level
spectra that are related to these same traits. The
correspondence of spectral features to foliar traits in
multiple types of spectral data (dry, fresh, canopy
spectra) points to a convergence of foliar optical
properties that we can leverage to more fully charac-
terize the variability in ecological function of ecosys-
tems across broad geographical areas (Townsend et al.
2013). Future work will address spectral variability in
fresh spectra and imaging spectroscopy using these
same species, sample locations, and study sites.

CONCLUSIONS

The characterization of foliar chemistry composition
and morphology is essential to understanding the
response of forest ecosystems to continued global
change. In this study, we found that a number of
important leaf structural and biochemical traits could be
accurately estimated utilizing spectroscopic data, col-
lected on dried and ground leaf material, and a partial
least-squares regression (PLSR) approach. These in-
cluded leaf nitrogen concentration (Nmass; %), carbon
concentration (Cmass; %), leaf mass per area (Marea; g/
m2), fiber (ADF; %), lignin (ADL; %), cellulose (%), and
the nitrogen isotopic composition (d15N; %). In
particular, Nmass was strongly related to leaf spectra
(R2¼ 0.98), as were fiber constituents (R2 of 0.77–0.84)
and leaf mass per area (R2 ¼ 0.91). The wavelength
contributions were broadly similar for the seven leaf
traits, but also displayed significant distinctions in
specific wavelengths of importance, especially within
the shortwave infrared (SWIR) region. In addition, the
wavelengths of highest importance corresponded to
spectral regions of known chemical absorption features,
including those related to foliar proteins, lignin,
cellulose, and starches. An important next step for this
type of remote sensing research is to combine similar
data sets for other ecosystems (e.g., Richardson and
Reeves 2005, Petisco et al. 2006, Asner et al. 2011a) to
refine and standardize both data and methods as a basis
for operational models to estimate foliar traits from
vegetation globally. Such information will facilitate
more rapid and geographically broader characterization
of the range of variability in vegetation traits (and our
uncertainty in estimating them) for ecological research,
remote sensing, and modeling.
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Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne.
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SUPPLEMENTAL MATERIAL

Appendix A

List of tree species and their estimated functional trait values (Ecological Archives A024-198-A1).

Appendix B

Analysis of the partial least-squares regression (PLSR) model residuals (Ecological Archives A024-198-A2).

Supplement 1

The resulting PLSR model coefficients (and their uncertainties) for predicting foliar traits using leaf-level dried and ground
spectral reflectance data (Ecological Archives A024-198-A3).

Supplement 2

Simplified R script file illustrating the calibration of the dry spectra PLSR models and associated uncertainty analysis (Ecological
Archives A024-198-A4).
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